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Interferometer Control of Optical Tweezers

Arthur J. Decker

National Aeronautics and Space Administration

Glenn Research Center

Cleveland, Ohio 44135

ABSTRACT

This paper discusses progress in using spatial light modulators and interferometry to control the beam profile of an
optical tweezers. The approach being developed is to use a spatial light modulator (SLM) to control the phase profile of
the tweezers beam and to use a combination of the SLM and interferometry to control the intensity profile. The objective
is to perform fine and calculable control of the moments and forces on a tip or tool to be used to manipulate and
interrogate nanostructures. The performance of the SLM in generating multiple and independently controllable tweezers
beams is also reported. Concurrent supporting research projects are mentioned and include tweezers beam scattering and
neural-net processing of the interference patterns for control of the tweezers beams.

1. INTRODUCTION

NASA has a Nanotechnology Project to support its Aerospace Propulsion and Power Base Research and Technology
Program. 1 The objectives are to demonstrate novel multidisciplinary nanotechnologies to create new materials and

devices on the atomic and sub-atomic level that revolutionize the operation and performance of propulsion and power
systems for aerospace applications. To this end, there is emphasis on materials research such as the synthesis of SiC
nanotubes, but there is also an opportunity to adapt optical technology for a supporting role. Perhaps photonic
technology can assume a dominant role in the distant future for controlling the assembly, the measurement and the
remote transmission of the assembly information of nanostructures.

The high-resolution direct interrogation of nanostructures with propagating light waves is untenable, but systems that
combine material probes with optical measurements for direct interrogation are well known. Perhaps the atomic force
microscope is the best- known example. 2Here a tip is mounted to a cantilever and kept in contact with the material to be
probed. The deflection of the cantilever is measured optically with a laser beam. Atomic-size deflections are detected in
this manner. Another concept is to hold the tool or tip, together with the nanostructures, in one or more converging,
diverging light beams called optical tweezers. In the simplest case, an optical tweezers consists of a laser beam focused
by an oil-immersion microscope objective (Fig. 1). Small particles are pulled into the focus of the beam. There have
been many calculations of the details of this phenomenon, but a very simple concept is to imagine a particle on the
diverging side of the beam refracting light rays more parallel to the optical axis. The increase in axial momentum of the
light is balanced by an equal change in momentum of the particle in the opposite direction toward the focus. The

momentum given to the particle from the refraction of the beam holds the particle at the focus of the beam.

The concept being developed assumes one or more tweezers beams. A tweezers beam is imagined to hold a large
particle called the tool or tip in analogy with the atomic force microscope and to hold the nanostructures. The tweezers
beams are to be shaped in three ways: by manipulation of the phase distribution using a spatial light modulator (SLM),
by manipulation of the intensity distribution using interferometry, and by scattering from the tool or tip. The tool can

affect the nanostructure chemically, by contact, by evanescent-wave interaction, or by shaping the scattered tweezers
beam.

The eventual success of this approach depends on several researchers and the effectiveness of a number of technologies

to be developed for a number of years. The operation of the tweezers requires controlling the phase and intensity
distributions of the beams. The potential of using interferometry to control the intensity distribution of a tweezers beam
and to vary the forces on a particle trapped by the beam was demonstrated by adding an interferometer loop to the
tweezers hardware shown in Fig. 1. 3 The fringe pattern could be moved, if one of the interferometer mirrors was
piezoelectrically vibrated. A trapped particle was observed to move back and forth with the fringe motion. A more
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sophisticatedphasemodulatorisrequiredforusefulcontroloftheforcesandmomentsonthetool.Thereisalsoaneed
tocalculateandpredicttheforcesandmomentsonthetoolaswellasthefieldsfeltbythenanostructures.Finallythere
isaneedforefficientcomparisonoftheinputandoutputbeampatternssothatthetweezerscanbeusedforitsintended
application:amaterialsprocessorandprocesscontroller.

A SLMhasbeenacquiredthatcanbeusedtoestablishthephaseindependentlyat480by480pixels4forinterferometric
controloftheopticaltweezers.Theperformanceofthismodulatorisencouraginglygoodandwillbediscussedinthis
paperforphasemodulationandmultiplebeamgeneration.Thescatteringoftweezersbeamshasbeenevaluatedfor
morethanadecade,5andworkonthecalculationof near-fieldscatteringfromsphericalandnon-sphericaltoolsis
currentlybeingsupportedfor GaussianbeamsaswellasGaussianbeamsmodifiedby phasemodulationand
interferometricintensitymodulation.Thisworkisadmittedlycriticalforselectingthecorrectbeamconditioning,butis
inprogressbyotherresearchers,andwillnotbediscussedinanydetail.Finallyartificialneuralnetworkshavebeen
usedsuccessfullyforpattern-basedprocesscontrol6'7andfringe-patterninterpretations'9formorethanadecade.The
possibilityofusingneuralnetstointerpretthepost-scatteringinterferencepatternsandchangetheinputinterference
patternswillbediscussedbriefly.

Fig.1:Opticaltweezerssetupshowinganinterferometerloop,microscopeandparticlestobemanipulated.

ThesetupsfortestingtheSLMandthemeasuredperformancearediscussedinthenextthreesubsections.

2.SLMFOROPTICALTWEEZERS

2.1 Properties of SLM

The phase modulator is the critical component for performing interferometric control of optical tweezers. The SLM for
phase modulation 4'1° is still being evaluated at the time of the writing of this paper. But the initial results are very

encouraging and are discussed in some detail below.

The ideal phase modulator would be programmable independently over a large number of pixels; would be linear in the

inputs; would have a phase-modulation range of at least 0 to 2_; would be free of artifacts and pixelation effects; would
have no residual intensity modulation; and would have a fast response. The modulator acquired for interferometric
control of the optical tweezers does not achieve these properties flawlessly, but approximates several of them well. The
modulator acts like an adaptable mirror able to change the phase of a reflected beam independently at 480 by 480 pixels.
The mirror has 90 percent reflectivity and a size of 20 by 20 mm. This mirror arrangement is easily inserted into the
interferometers intended for the optical tweezers. The change in phase at each resolution element of the mirror is
approximately proportional to the pixel intensity imaged from a Liquid Crystal Display (LCD) that is an integral part of
an SLM, Lens, LCD combination. It is sufficient to note that the complete modulator produces a phase variation in the
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reflected light approximately proportional to the graphics input intensity from the LCD that, in turn, ranges from 0 to

255. The LCD itself acquires the graphics pattern from the green connector of a VGA of a PC. The pattern previously

has been displayed by graphics software. The pattern and graphics software are selected so that the pattern fills the entire

display. The pattern is delivered to the actual SLM using F/40 optics to filter out the pixelation effect of the LCD. The

details of construction of the SLM are reported in a reference, l° The corresponding phase variation is slightly larger than

0 to 2m The rise and fall times of the modulator add to about 190 milliseconds; hence no more than 5 pattern updates per

second are feasible. Figure 2 shows the LCD, SLM combination.

Fig. 2: LCD, SLM combination viewed toward the 20 by 20 mm adaptable mirror.

The process for using the LCD, SLM combination to control tweezers beams is easily stated. The first step is to compute

the desired phase distribution qb(x, y). This computation step in general depends on the particle scattering research

mentioned in the INTRODUCTION. A simpler application to multi-tweezers-beam generation is discussed in the next

section. The phase distribution can be calculated for control of the LCD, SLM at up to 480 by 480 points. The phase

distribution is then converted to an intensity distribution using the calibration curve supplied with the LCD, SLM

combination. The intensity-versus-phase calibration for the results to be reported is represented by the cubic

I=4.10614 + 59.5342 qb- 7.88323 qb 2 + 0.675005 qb3. (1)

A phase shift of 2 g, for example, corresponds to a calculated intensity of 234 from eq. (1). The intensity distribution is

then converted to an appropriate form, such as a TIFF file, for use with the graphics display software that communicates

with the LCD, SLM via the VGA.

The performance of the phase modulator can be evaluated most easily by examining its use to generate multiple beams

from a single input beam. Multiple and independently controllable reflected beams are potentially useful for many

applications as well as tweezers.

2.2 Multiple Beam Generation

Figure 3 shows the simple setup used to test the multi-beam generation performance of the SLM. The beam from a

Nd:YVO4 laser is passed through a beam expanding telescope. The beam then traverses about 4 m before being reflected

from the modulator. The reflected beams then pass back through the telescope and are observed, usually after reflecting

them from a beam splitter onto a screen.

The simplest test of the quality of the SLM is to attempt to generate 3 beams, including a directly reflected beam and

2 beams from a cos(O) pattern. The phase qb cannot increase linearly with position, but must be restricted to the range

0 to 2g. A saw tooth phase pattern satisfying this requirement is generated from the expression

qb = 2cos-1 [cos (2gfx)]. (2)

Here f is the spatial frequency of the saw tooth phase pattern (saw teeth per unit length).
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Thisphasewascalculatedovera400by400arrayofpointsfor25full cyclesof thesawtoothandlinearizedusing
eq.(1).ThepatternwasconvertedtoaTIFFimageandsuppliedtothemodulatorthroughtheVGAconnector.TIFF
images,unlikeGIFimages,occupythefull 0 to255rangeavailabletotheSLM.Infact,therewere5beamsobserved
ratherthan3beamsexpected.Twoendbeamsarefainterthanthoseadjacenttothecenterbeamandindicatesome
residualintensitymodulation,anon-linearityinimagecreation,and/ortheneedforapositionallydependentcalibration
ratherthanthesingleexpressionineq.(1).TheperformanceoftheSLMisdegradedfurthertotheextentofproducing
7beamsratherthan3beams,if eq.(2)istransformedlinearlyratherthanthrougheq.(1).TheperformanceoftheSLM
is quitesensitiveto thedetailsof theintensity-to-phasetransferfunction.If requiredby thetweezerssetup,the
calibrationoftheoverallsoftwareandSLMsystemwillbeadjustedtoreducetheintensitiesoftheextraneousbeams.In
fact,simplyreducingthecontrastoftheinputpatternreducesthebrightnessoftheextraneousbeams.

Fig.3: SetupforgeneratingandviewingmultiplebeamsusingtheLCD,SLMcombination.

A moreinterestingexperimentistotesttheabilityofthemodulatortogeneratemultipleandindependentlycontrollable
beams.Sendingarectangulargridpatterntothemodulatoreasilygenerateslargenumbersofbeams.Abettertestis to
generatemultiplecos(qb)patternssummedtocreatetheindependentlycontrollablebeams.Thephasemodulationto
accomplishthistestisgivenby

N 1

N J
(3)

where N is the number of patterns and

Aqb i =cosI2g(fxiX + fyiY)] (4)

provides a directed cosine pattern in the xy plane. Varying (fx_, fy0 moves, and controls the magnitude and direction of

motion, of the corresponding beam.

A test was conducted for 3 independently controllable beams. Actually 7 bright beams are generated by symmetry. The

beams include the directly reflected beam and 3 pairs. The beams in a pair move together. Hence only three beams can

be moved independently. The calculated phase assumed the form

qb(x,y): 2 cos-113cos (2gflx) + 3cos(gf2 {x + y}) + 3cos (2gf3 y)].
(5)
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Patterns1,2and3refertothecosinefunctionswithfrequenciesfl, f2,andf3ineq.(5).Forthetesttoshowthemotion
of3 independentlycontrollablebeams,pattern#1wassteppedinunitsof 1from25to30saw-toothcycles;pattern#2
wassteppedinunitsof5from50to25saw-toothcycles;andpattern#3wassteppedinunitsof 1from30to25saw-
toothcycles.

Figure4showsthefirstandlastinputpatternsandthecorrespondingfirstandlastbeamarrangementsrecordedduring
thistest.Theconclusionisthatindependentmotionof3ormorebeamsiseasilyaccomplished.

Fig.4:FirstandlastinputpatternsandcorrespondingbeampatternsfromsetupinFig.3.

TheusesoftheSLMtogeneratephasemodulatedbeamsforinterferometryandmultipleinterferingbeamsarediscussed
inthenextsubsection.

2.3 SLM as an interferometer component of an optical tweezers

The SLM acts as an adaptive mirror to generate multiple interfering beams by itself, but the intended application

envisions that most of the tweezers power will remain in the original laser beam. That beam will be combined in an

interferometer with a lower power beam reflected from the SLM. The arrangement shown in Fig. 1 tested a rudimentary

form of this configuration. Figure 5 shows the results of combining the expanded laser beam with a beam reflected from

the SLM. The SLM constituted one mirror of a Twyman-Green interferometer for that demonstration. The

interferometer was set up in finite-fringe mode with the pattern shown in Fig. 5a. Five saw-tooth cycles (Fig. 5b and

Fig. 5c) were delivered to the VGA of the PC connected to the SLM. The effect on the finite-fringe pattern shows

clearly (Fig. 5d). Figure 5e shows the pattern reflected from the SLM alone with the reference beam blocked.

The SLM can function as a local-reference-beam interferometer by itself. The performance was tested by passing the

SLM-transformed beam through a classical spatial filter in order to isolate a pair of reflected beams whose interference

pattern was then recorded. The SLM was supplied with the phase (after transformation by eq. (1)) given by

qb = 2 cos-1 {2cos [2gfxlX sign (cos[2gfxlX])+ 2gfylY]+ lcos [2gfy2Y]l.
(6)
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wheresign(x)= 1 whenx >0, and sign(x) = -1 when x<0. The fx and fy denote spatial frequencies in the x and y

directions. Figure 6 shows an interference pattern from a pair of beams selected by spatial filtering.

Fig. 5: (a) Carrier fringes; (b) saw-tooth phase; (c) input pattern; (d) finite-fringe pattern; (e) SLM-reflected beam.

Fig. 6: Interference of pair of beams selected by spatial filtering.

NASA/TM--2002-211586 6



The frequency fyl was selected to correspond to about 18 saw-tooth cycles and fy2 was selected to correspond to 30 saw-
tooth cycles. The frequency fxl was selected to correspond to about 3.5 saw-tooth cycles.

The tweezers beam still requires a controller, assuming that the phase modulator is adequate and that the fringe patterns
are correctly calculated. One intended application of the tweezers is automated assembly of nano-structures. Neural-net
processors have proven to be effective for interpreting fringe patterns and generating process control decisions from
fringe patterns. As outlined in the next section, we intend to investigate the use of neural nets to direct the interferometer
controlled tweezers beams.

3. NEURAL-NET-DIRECTED CONTROL

Artificial neural networks have been used successfully to direct the alignment of a Gaussian-beam-smoothing spatial
filter; 6 to perform flow-visualization-pattern to flow-visualization-pattern transformations and direct control actions in a
wind tunnel; 7 and to perform sensitive detection of changes in electronic holography patterns s'9 for non-destructive

evaluation. The studies have shown that the sensitivity and training of feedforward nets to learn pattern data can be
improved greatly by using the correct intensity dependent transformations of the input patterns. 9 The nets can be trained
with both experimental and model-generated training records. It seems feasible to use model and experimental-pattern

trained neural networks for tweezers-beam interference-pattern-to-interference-pattern transformations.

The neural nets can easily handle the 5-pattern-per-second processing rate imposed by the phase modulator. The major
current restriction is that the interference patterns are limited to between 1,000 and 10,000 inputs or outputs of the
feedforward nets. But the information needed to generate, for example, eq. (5) is considerably less at 3 spatial
frequencies. The most difficult task is anticipated to be experimental: the detection of the scattering-modified
interference patterns for neural-net interpretation. The scattered light is very hard to access.

4. CONCLUDING REMARKS

We noted that the feasibility of using a changing interference pattern to move a tweezers-held particle has been
established experimentally. We hypothesized that the practical exploitation of this effect for nanotechnology requires an
adequate programmable phase modulator, some new computations of the near field scattering from a tweezers-held tip or
tool, and a neural-net process control system. The major conclusion reported herein is that the phase modulator selected
for interferometer control appears to perform adequately. The modulator is easy to use to generate multiple and
independently controllable beams. The modulator is easy to program and performs well as an adaptable mirror in an
interferometer. The modulator in fact performs well enough that the scattering computations and the adaptation of the
neural-net process-control methods appear to be justified.
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